uEMEP_read_emission_rivm_data Subroutine

public subroutine uEMEP_read_emission_rivm_data()

Uses

  • proc~~uemep_read_emission_rivm_data~~UsesGraph proc~uemep_read_emission_rivm_data uEMEP_read_emission_rivm_data module~uemep_definitions uEMEP_definitions proc~uemep_read_emission_rivm_data->module~uemep_definitions

Arguments

None

Called by

proc~~uemep_read_emission_rivm_data~~CalledByGraph proc~uemep_read_emission_rivm_data uEMEP_read_emission_rivm_data program~uemep uEMEP program~uemep->proc~uemep_read_emission_rivm_data

Source Code

    subroutine uEMEP_read_emission_rivm_data

        use uEMEP_definitions

        implicit none

        integer i,j
        character(256) temp_str
        integer unit_in
        logical :: exists
        integer count
        real ddlatitude,ddlongitude,totalemission
        real y_emission,x_emission
        integer i_emission_index,j_emission_index
        real emission_scale
        integer i_file
        integer source_index

        character(256) component_str
        integer i_source
        real height
        integer snap, compound_nc_index
        integer i_pollutant
        integer, allocatable :: count_subgrid(:,:,:)
        real :: height_mean(n_source_index)=0
        integer :: count_mean(n_source_index)=0
        integer :: io

        write(unit_logfile,'(A)') ''
        write(unit_logfile,'(A)') '================================================================'
        write(unit_logfile,'(A)') 'Reading emission rivm data  (uEMEP_read_emission_rivm_data)'
        write(unit_logfile,'(A)') '================================================================'

        !Set the projection to the dutch one
        !Should already have been specified. Not generic enough
        !projection_type=RDM_projection_index

        !Set the sources to be downscaled to 0
        do i_source=1,n_source_index
            if (calculate_source(i_source)) then
                proxy_emission_subgrid(:,:,i_source,:)=0.
                emission_properties_subgrid(:,:,emission_h_index,i_source)=0.
            endif
        enddo

        allocate (count_subgrid(emission_max_subgrid_dim(x_dim_index),emission_max_subgrid_dim(y_dim_index),n_source_index))
        count_subgrid=0

        !Read in as g/s and convert to ug/s which is used in the model
        emission_scale=1.0e6

        !Set filename, only 1 file used
        pathfilename_emission_rivm(1)=trim(pathname_emission_rivm(1))//trim(filename_emission_rivm(1))
        !pathfilename_emission_rivm(2)=trim(pathname_emission_rivm(2))//trim(filename_emission_rivm(2))

        !Test existence of the emission files. Only one file used. If does not exist then stop
        inquire(file=trim(pathfilename_emission_rivm(1)),exist=exists)
        if (.not.exists) then
            write(unit_logfile,'(A,A)') ' ERROR: emission RIVM file does not exist: ', trim(pathfilename_emission_rivm(1))
            stop
        endif
        !inquire(file=trim(pathfilename_emission_rivm(2)),exist=exists)
        !if (.not.exists) then
        !    write(unit_logfile,'(A,A)') ' ERROR: emission RIVM file does not exist: ', trim(pathfilename_emission_rivm(2))
        !    stop
        !endif


        !Open the files for reading
        i_file=1
        unit_in=20
        open(unit_in,file=pathfilename_emission_rivm(i_file),access='sequential',status='old',readonly)
        write(unit_logfile,'(a)') ' Opening emmision RIVM file '//trim(pathfilename_emission_rivm(i_file))

        rewind(unit_in)

        !Read header x,y,emission
        read(unit_in,'(A)') temp_str
        write(unit_logfile,'(A)') trim(temp_str)
        count=0
        do
            !read(unit_in,'(A)') temp_str

            ddlatitude=0.;ddlongitude=0.;totalemission=0.;height=0;snap=0;component_str='';
            !read(unit_in,'(2f,e,f,i,a)') x_emission,y_emission,totalemission,height,snap,component_str
            read(unit_in,*,iostat=io) x_emission,y_emission,totalemission,height,snap,component_str
            if (io /= 0) exit
            !write(*,'(2f,e,f,i,a)') x_emission,y_emission,totalemission,height,snap,trim(component_str)

            compound_nc_index=0
            if (index(component_str,'NOx').ne.0) compound_nc_index=nox_nc_index
            if (index(component_str,'PM10').ne.0) compound_nc_index=pm10_nc_index
            if (index(component_str,'NH3').ne.0) compound_nc_index=nh3_nc_index
            if (index(component_str,'PM25').ne.0) compound_nc_index=pm25_nc_index

            !write(*,'(i,a)') compound_nc_index,trim(component_str)


            !Find the source sector in SNAP
            source_index=0
            do i_source=1,n_source_index

                if (calculate_source(i_source).and.uEMEP_to_EMEP_sector(i_source).eq.snap) then
                    source_index=i_source
                endif
            enddo


            !write(*,*) count
            count=count+1
            !Convert lat lon to utm coords

            !call RDM2LL(y_emission,x_emission,ddlatitude,ddlongitude)

            !if (mod(count,100000).eq.0) write(unit_logfile,'(i,2f12.2,e12.2,f12.2,i,2a)') count,x_emission,y_emission,totalemission,height,snap,'  ',trim(component_str)
            !write(*,*) source_index,compound_nc_index
            !Assumes the projection for the subgrid and the emissions are the same
            if (source_index.gt.0.and.compound_nc_index.gt.0) then
                !Find the subgrid index it belongs to
                i_emission_index=1+floor((x_emission-emission_subgrid_min(x_dim_index,source_index))/emission_subgrid_delta(x_dim_index,source_index))
                j_emission_index=1+floor((y_emission-emission_subgrid_min(y_dim_index,source_index))/emission_subgrid_delta(y_dim_index,source_index))
                !write(*,*) i_emission_index,j_emission_index,emission_subgrid_min(x_dim_index,source_index),emission_subgrid_min(y_dim_index,source_index)
                !Check that it is valid and add it to the subgrid
                if (i_emission_index.ge.1.and.i_emission_index.le.emission_subgrid_dim(x_dim_index,source_index).and.j_emission_index.ge.1.and.j_emission_index.le.emission_subgrid_dim(y_dim_index,source_index)) then
                    !Add to subgrid
                    proxy_emission_subgrid(i_emission_index,j_emission_index,source_index,pollutant_loop_back_index(compound_nc_index))= &
                        proxy_emission_subgrid(i_emission_index,j_emission_index,source_index,pollutant_loop_back_index(compound_nc_index)) &
                        +totalemission*emission_scale

                    emission_properties_subgrid(i_emission_index,j_emission_index,emission_h_index,source_index)= &
                        emission_properties_subgrid(i_emission_index,j_emission_index,emission_h_index,source_index)+height
                    !emission_properties_subgrid(i_emission_index,j_emission_index,emission_h_index,source_index)= height

                    count_subgrid(i_emission_index,j_emission_index,source_index)=count_subgrid(i_emission_index,j_emission_index,source_index)+1
                    !write(*,*) count_subgrid(i_emission_index,j_emission_index,source_index)

                endif

            endif

        enddo
        write(unit_logfile,'(A,I)') ' Emission counts = ',count

        close(unit_in)
        !enddo !file loop

        !Average the emission height sum and check output by looking at means
        do i_source=1,n_source_index
            if (calculate_source(i_source)) then
                do j=1,emission_subgrid_dim(y_dim_index,i_source)
                    do i=1,emission_subgrid_dim(x_dim_index,i_source)
                        if (count_subgrid(i,j,i_source).gt.0) then
                            emission_properties_subgrid(i,j,emission_h_index,i_source)=emission_properties_subgrid(i,j,emission_h_index,i_source)/count_subgrid(i,j,i_source)
                            height_mean(i_source)=emission_properties_subgrid(i,j,emission_h_index,i_source)+height_mean(i_source)
                            count_mean(i_source)=count_mean(i_source)+1
                        endif
                    enddo
                enddo

            endif
        enddo

        where (count_mean.gt.0) height_mean=height_mean/count_mean

        !Show results
        do i_source=1,n_source_index
            if (calculate_source(i_source)) then
                do i_pollutant=1,n_pollutant_loop
                    write(unit_logfile,'(A,A,A,ES10.2,A,f6.2)') 'Emission source ',trim(source_file_str(i_source))//' '//trim(pollutant_file_str(pollutant_loop_index(i_pollutant))),': Total RIVM emissions (ug/s)=', &
                        sum(proxy_emission_subgrid(1:emission_subgrid_dim(x_dim_index,i_source),1:emission_subgrid_dim(y_dim_index,i_source),i_source,i_pollutant)),'  Mean emission height (m)=',height_mean(i_source)
                enddo
            endif
        enddo

        deallocate (count_subgrid)


    end subroutine uEMEP_read_emission_rivm_data